The Evolutionary Role of Curly Hair: Keeping Early Humans Cool and Moisturized

Posted by

Cooling effect on curly hair

The evolution of curly hair in early humans was a crucial adaptive trait in equatorial Africa, providing effective protection from the sun’s heat and reducing the need to sweat, researchers say. This passive cooling mechanism allowed the brain to grow by conserving water and reducing heat. The study provides new insights into the evolutionary role of hair structure.

The densely curled scalp protected early humans from the radiant heat of the sun and allowed their brains to grow to sizes comparable to those of modern humans.

According to researchers studying the role of human hair texture in regulating body temperature, curly hair doesn’t just look good — it may explain how humans stay cooler while conserving water. The findings could shed light on the evolutionary adaptations that allowed the human brain to grow to its modern size.

“Humans evolved in equatorial Africa, where the sun was above the sun most of the year, year-round,” said Nina Jablonski, professor of anthropology at Penn State’s Evan Pugh University. “Here, the scalp and top of the head receive a much more constant level of intense solar radiation as heat. We wanted to understand how this affected the evolution of our hair. We found that tightly coiled hair helps people stay cooler and conserve water.”

Thermal manikin and human hair wigs

A thermal manikin wearing a wig made of highly curled (left) and straight (right) human hair. The mannequin uses electricity to simulate body heat and allows scientists to study heat exchange between human skin and the environment. A new study examining the role of human hair structure in regulating body temperature suggests that tightly curled hair provides the best protection from the sun’s radiant heat, while also reducing the need to sweat to stay cool. Credit: George Havenith, Loughborough University

The researchers used a thermal manikin—a human-shaped model that uses electricity to simulate body heat and allows scientists to study heat exchange between human skin and the environment—and human hair wigs to study how hair texture affects heat absorption from the sun. radiation. Scientists programmed the mannequin to maintain a constant surface temperature of 95 degrees[{” attribute=””>Fahrenheit (35 degrees Celsius), similar to the average surface temperature of skin, and set it in a climate-controlled wind tunnel.

The team took base measurements of body heat loss by monitoring the amount of electricity required by the manikin to maintain a constant temperature. Then they shined lamps on the manikin’s head to mimic solar radiation under four scalp hair conditions — none, straight, moderately curled, and tightly curled.

The scientists calculated the difference in total heat loss between the lamp measurements and the base measurements to determine the influx of solar radiation to the head, explained George Havenith, director of the Environmental Ergonomics Research Centre at Loughborough University, U.K., who led the manikin experiments. They also calculated heat loss at different windspeeds and after wetting the scalp to simulate sweating. They ran their results through a model to study how the diverse hair textures would affect heat gain in 86-degree Fahrenheit (30 degrees Celsius) heat and 60% relative humidity, like environments in equatorial Africa.

The researchers found that all hair reduced solar radiation to the scalp, but tightly curled hair provided the best protection from the sun’s radiative heat while minimizing the need to sweat to stay cool. They reported their findings on June 6, 2023, in the Proceedings of the National Academy of Sciences.

Curls Keep You Cool Research Infographic

A graphic showing how scientists used a thermal manikin and human hair wigs to measure heat transfer from the scalp. Credit: Melisa Morales Garcia

“Walking upright is the setup and brain growth is the payoff of scalp hair,” said Tina Lasisi, who conducted the study as part of her doctoral dissertation at Penn State. Lasisi will start as an assistant professor of anthropology at the University of Michigan in the fall.

As early humans evolved to walk upright in equatorial Africa, the tops of their heads increasingly took the brunt of solar radiation, explained Lasisi. The brain is sensitive to heat, and it generates heat, especially the larger it grows. Too much heat can lead to dangerous conditions like heat stroke. As humans lost much of their body hair, they developed efficient sweat glands to keep cool, but sweating comes at a cost in lost water and electrolytes. Scalp hair likely evolved as a way to reduce the amount of heat gain from solar radiation, thereby keeping humans cool without the body having to expend extra resources, said Lasisi.

“Around 2 million years ago we see Homo erectus, which had the same physical build as us but a smaller brain size,” she said. “And by 1 million years ago, we’re basically at modern-day brain sizes, give or take. Something released a physical constraint that allowed our brains to grow. We think scalp hair provided a passive mechanism to reduce the amount of heat gained from solar radiation that our sweat glands couldn’t.”

The multidisciplinary research provides important preliminary results for bettering our understanding of how human hair evolved without putting humans in potentially dangerous situations, said Jablonski.

The study also shows that evolutionary anthropologists have an extra tool in the thermal manikin – normally used for testing the functionality of protective clothing – for quantifying human data that is otherwise very difficult to capture, added Havenith.

“The work that’s been done on skin color and how melanin protects us from solar radiation can shape some of the decisions that a person makes in terms of the amount of sunscreen needed in certain environments,” said Lasisi. “I imagine that similar decision-making can occur with hair. When you think about the military or different athletes exercising in diverse environments, our findings give you a moment to reflect and think: is this hairstyle going to make me overheat more easily? Is this the way that I should optimally wear my hair?”

Reference: “Human scalp hair as a thermoregulatory adaptation” by Tina Lasisi, James W. Smallcombe, W. Larry Kenney, Mark D. Shriver, Benjamin Zydney, Nina G. Jablonski and George Havenith, 6 June 2023, Proceedings of the National Academy of Sciences.
DOI: 10.1073/pnas.2301760120

Also contributing to the research were James Smallcombe, Loughborough University and the University of Australia; and from Penn State Larry Kenney, professor of physiology, kinesiology and Marie Underhill Noll Chair in Human Performance; Mark Shriver, professor of anthropology; and Benjamin Zydney, previously an undergraduate research assistant and now a Penn State alum.

The National Science Foundation and the Wenner-Gren Foundation supported this work.


#Evolutionary #Role #Curly #Hair #Keeping #Early #Humans #Cool #Moisturized

Leave a Reply

Your email address will not be published. Required fields are marked *